CalNex 2010 Study Overview

Jim Meagher and Tom Ryerson NOAA ESRL Chemical Sciences Division

Major field study in May-June 2010

Led by ARB and NOAA; many partners with independent goals *University researchers, NASA, DOE, NSF, NRL, USFS, NPS*

Surface-, aircraft-, ship-, and space-based measurements; complemented by Lagrangian and Eulerian modeling studies

Building on decades of existing research in California

CalNex NOAA P-3 flight tracks

Measurements during CalNex:

Long-term surface observations

Ground-based monitoring stations

Measurements during CalNex:

Long-term surface observations

Instrumented tall towers

CALGEM (LBNL/NOAA) tall tower sites

Measurements during CalNex:

Long-term surface observations

Instrumented tall towers

Major intensive ground sites

CalNex and CARES major ground sites

Measurements during CalNex:

Long-term surface observations

Instrumented tall towers

Major intensive ground sites

Daily ozonesonde launches

IONS-2010 ozonesonde network

Measurements during CalNex:

Long-term surface observations

Instrumented tall towers

Major intensive ground sites

Daily ozonesonde launches

Radar profiler network

Upper-air profiling sites

Measurements during CalNex:

Long-term surface observations

Instrumented tall towers

Major intensive ground sites

Daily ozonesonde launches

Mobile research platforms
NOAA WP-3D & Twin Otter
CIRPAS Twin Otter
NASA King Air
DOE G-1
R/V Atlantis

Satellite observations TES, OMI, Sciamachy, IASI

CalNex and CARES aircraft operations

NOAA WP-3D payload - CalNex 2010

<u>Instrument</u>	<u>Measurement</u>	Time resolution
O_3	ozone	1 sec
CO	carbon monoxide	1 sec
SO_2	sulfur dioxide	3 sec
CO ₂ and CH ₄	carbon dioxide and methane	1 sec
AWAS	VOCs, halocarbons, alkyl nitrates	72/flight
PTRMS	oxy-VOCs, aromatics, acetonitrile	15 sec
НСНО	formaldehyde	1 sec
NO, NO ₂ , and NO _y	nitrogen oxides	1 sec
PANs and ClNO ₂	peroxyacyl nitrates and nitryl chloride	1 sec
NO_3 and N_2O_5	nocturnal nitrogen oxides	1 sec
HNO ₃	nitric acid	
NH ₃	ammonia	1 sec
LTI	aerosol low turbulence inlet	1 sec
NMASS/UHSAS/WLOPC	0.004 to 8 µm aerosol size distribution	on 1 sec
CRD-AES	$3-\lambda$ aerosol extinction as f(RH)	1 sec
PSAP	3-λ aerosol absorption (filter)	15 sec
PAS	3-λ aerosol absorption (photoacoust	ic) 5 sec
SP2	aerosol black carbon	1 sec
PILS	aerosol chemical composition	80/flight
AMS	aerosol chemical composition	10 sec
UV-VIS spectrometer	spectral actinic flux from 280-689 nm	1 sec
TDL H ₂ O	water vapor	1 sec
cloud probes	drop size and morphology	1 sec
position and meteorology	aircraft location, T, P, winds, etc.	1 sec

Emissions
evaluation
will be a focus
in CalNex

anthropogenic

biogenic

biomass burning
1 sec

agricultural

GHGs and soot

NOAA WP-3D flight on 2010/05/07 in San Joaquin Valley

Courtesy of Chuck Brock

Preliminary results from measurements onboard RV Atlantis:

- Particle production occurred in the Sacramento region during morning hours as ion clusters formed particles followed by growth due to condensation of organic vapors.
- Marine vessels within 24 miles of shore appear to be in compliance with the low sulfur fuel regulations implement by the California Air Resources Board.
- Joint work with the NOAA RV Miller Freeman indicates that the BC emissions factor increases with ship speed.

NOAA Twin Otter CalNex 2010 Summary

- Deployment dates: May 19 July 19, 2010
- Key Objectives
 - Horizontal/vertical pollution transport
 - Three-dimensional pollution distribution and model validation
- Operational Areas: Los Angeles, Southern California, Sacramento area, Central Valley, CA-Mexico border
- Primary instruments:
 - Downward-looking ozone and aerosol lidar (TOPAZ)
 - Airborne Multi-Axes Differential Optical Absorption Spectroscopy (AMAX-DOAS) Instrument
 - University of Leeds Doppler wind lidar

Preliminary Data Example showing wind and O₃ layering

15 July 2010: Complex 3-D distribution of O₃ over the LA Basin

15 July 2010: Complex 3-D distribution of wind speed over the Basin

CalNex Super Site at Caltech

- Extensive suite of gas-phase and aerosol measurements
- Campus of Caltech
- May 15 June 16, 2010

Science goals: Formation of secondary organic aerosol (SOA) in urban air Nighttime and early-morning processing of urban emissions and many, many others

Courtesy of Joost deGouw

CalNex Super Site at Caltech

Average diurnal variations in a few selected species:

Preliminary findings:

- •Most reactive HCs maximize at night: local, unprocessed emissions
- •Organic aerosol, other photoproducts and less reactive HCs maximize in the early PM: transport of processed air from LA

CalNex / IONS Median Profiles May – June 19 Preliminary Data

